top of page

PUBLICATIONS

1. P. S. Stephanou, C. Baig, and V.G. Mavrantzas, “A generalized differential constitutive equation based on principles of non-equilibrium thermodynamics”, J. Rheol. 53, 309-337 (2009)

2. P. S. Stephanou, C. Baig, G. Tsolou and V. G. Mavrantzas, and M. Kröger, “Quantifying chain reptation in entangled polymer melts: Topological and dynamical mapping of atomistic simulation results onto the tube model”, J. Chem. Phys. 132, 124904 (2010)

3. C. Baig, P. S. Stephanou, G. Tsolou, V. G.  Mavrantzas, and M. Kröger, “Understanding dynamics in binary mixtures of entangled cis-1,4-polybutadiene melts at the level of primitive path segments by mapping atomistic simulation data onto the tube model”, Macromolecules 43, 8239-8250 (2010).

4. G. Tsolou, N. Stratikis, C. Baig, P. S. Stephanou, and V. G.  Mavrantzas, “Melt Structure and Dynamics of Unentangled Polyethylene Rings: Rouse Theory, Atomistic Molecular Dynamics Simulation, and Comparison with the Linear Analogues”, Macromolecules 43, 10692–10713 (2010).

5. P. S. Stephanou, C. Baig, and V. G. Mavrantzas, “Projection of atomistic simulation data for the dynamics of entangled polymers onto the tube theory: Calculation of the segment survival probability function and comparison with modern tube models”, Soft Matter 7, 380–395 (2011).

6. J. M. Kim, P. S. Stephanou, B. J. Edwards, and B. Khomami, “A mean-field anisotropic diffusion model for unentangled polymeric liquids and semi-dilute solutions:  Model development and comparison with experimental and simulation data”, J. Non- Newtonian Fluid Mech. 166, 593–606 (2011).

7. P. S. Stephanou, C. Baig, and V.G. Mavrantzas, “Toward an Improved Description of Constraint Release and Contour Length Fluctuations in Tube Models for Entangled Polymer Melts Guided by Atomistic Simulations”, Macromol. Theor. Simul. 20, 752–768 (2011)

8. J. Qin, S. T. Milner, P. S. Stephanou, and V.G. Mavrantzas, “Effects of Tube Persistence Length on Dynamics of Mildly Entangled Polymers”, J. Rheol. 56, 707-723 (2012) [selected for the May 15, 2012 issue of Virtual Journal of Biological Physics Research (www.vjbio.org)].

9. P. S. Stephanou, and V.G. Mavrantzas, “Quantitative predictions of the linear viscoelastic properties of entangled polyethylene and polybutadiene melts via modified versions of modern tube models on the basis of atomistic simulation data”, J. Non- Newtonian Fluid Mech. 200, 111-130 (2013).

10. P. S. Stephanou, and V.G. Mavrantzas, “Accurate prediction of the linear viscoelastic properties of highly entangled mono and bidisperse polymer melts”, J. Chem. Phys. 140, 214903 (2014).

11. P. S. Stephanou, V.G. Mavrantzas, G. C. Georgiou, “Continuum Model for the Phase Behavior, Microstructure, and Rheology of Unentangled Polymer Nanocomposite Melts”, Macromolecules 47,4493–4513 (2014)

12. P. S. Stephanou, “How the flow affects the phase behaviour and microstructure of polymer nanocomposites”, J. Chem. Phys. 142, 064901 (2015).

13. P. S. Stephanou*, I. Tsimouri, and V. G. Mavrantzas, “Flow-induced orientation and stretching of entangled polymers in the framework of non-equilibrium thermodynamics”, Macromolecules 49, 3161–3173 (2016).

14. P. S. Stephanou*, and M. Kröger, “Solution of the complete Curtiss-Bird model for polymeric liquids subjected to simple shear flow”, J. Chem. Phys. 144, 124905 (2016).

15. P. S. Stephanou, T. Schweizer, and M. Kröger, “Communication: Appearance of undershoots in start-up shear: Experimental findings captured by tumbling-snake dynamics”, J. Chem. Phys. 146, 161101 (2017).

16. P. S. Stephanou, and M. Kröger, “Non-constant link tension coefficient in the tumbling-snake model subjected to simple shear”, J. Chem. Phys. 147, 174903 (2017).

17. P. S. Stephanou, “The rheology of drilling fluids from a non-equilibrium thermodynamics perspective”, J. Pet. Sci. Eng. 165, 1010-1020 (2018).

18.  I. Ch. Tsimouri, P. S. Stephanou, and V. G. Mavrantzas, “A rheological model for blood from nonequilibrium thermodynamics: Model development”, Phys. Fluids, 30, 030710 (2018).

19. P. S. Stephanou, and M. Kröger, “Solution of the complete Curtiss-Bird model for polymeric liquids subjected to planar elongation”, Polymers, 10, 329 (2018).

20. P. S. Stephanou, and M. Kröger, “From intermediate anisotropic to isotropic friction at large strain rates to account for viscosity thickening in polymer solutions”, J. Chem. Phys. 148, 184903 (2018).

21. P. S. Stephanou, D. G. Tsalikis, E. N. Skountzos, and V. G. Mavrantzas, “Hierarchical modeling of polymer nanocomposites: Non-equilibrium thermodynamics modeling coupled with detailed atomistic non-equilibrium molecular dynamics simulations”, Materials Today: Proceedings 5, 27589–27598 (2018) [Invited].

22. P. S. Stephanou, and G. C. Georgiou, “A nonequilibrium thermodynamics perspective of thixotropy”, J. Chem. Phys. 149, 244902 (2018).

23. P. S. Stephanou, and M. Kröger, “Assessment of the tumbling-snake model against linear and nonlinear rheological data of bidisperse polymer blends”, Polymers, 11, 376 (2019).

24. P. S. Stephanou, I. Ch. Tsimouri, and V. G. Mavrantzas, “Simple, Accurate and User-Friendly Differential Constitutive Model for the Rheology of Entangled Polymer Melts and Solutions from Non-Equilibrium Thermodynamics”, Materials  13, 2867 (2020) [Invited]

25. P. S. Stephanou, I. Ch. Tsimouri, and V. G. Mavrantzas, “Two-species models for the rheology of associative polymer solutions: Derivation from nonequilibrium thermodynamics”, J. Rheol, 64, 1003 (2020)

26. P. S. Stephanou, and I. Ch. Tsimouri, “A constitutive hemorheological model addressing the deformability of red blood cells in Ringer solutions”, Soft Matter, 16, 7585 (2020).

27. P. S. Stephanou, “A constitutive hemorheological model addressing both the deformability and aggregation of red blood cells”, Phys. Fluids, 32, 103103 (2020).  [Selected as Featured article] [Erratum: Phys. Fluids 33, 039901 (2021)].

28. E. N. Skountzos, D. G. Tsalikis, P. S. Stephanou, and V. G. Mavrantzas, “Individual Contributions of Adsorbed and Free Chains to Microscopic Dynamics of Unentangled poly(ethylene Glycol)/Silica Nanocomposite Melts and the Important Role of End Groups: Theory and Simulation”, Macromolecules, 54, 4470–4487 (2021).

29. P. S. Stephanou, “On the consistent modeling of shear-thickening polymer solutions”, Phys. Fluids, 33, 063107 (2021).

30. P. S. Stephanou, “Elucidating the rheological implications of adding drug-carrying particles in blood”, Rheol. Acta, 60, 603–616 (2021).

31. V. M. Nikiforidis, D. G. Tsalikis, and P. S. Stephanou, “On the use of a non-constant non-affine or slip parameter in polymer rheology constitutive modeling”, Dynamics, 2, 380–398 (2022) 

32. M. Papademetriou, and P. S. Stephanou, “Modeling the rheological response of crude oil emulsions”, Phys Fluids, 34, 113107 (2022)

33. P. S. Stephanou, “Quantifying the oscillatory behavior in start-up shear by analytically solving the Johnson–Segalman/Gordon–Schowalter model”, J. Non-Newt. Fluid Mech. 312, 104966 (2023)

34. P. S. Stephanou, P. Vafeas, and V. G. Mavrantzas, “A non-equilibrium thermodynamics framework addressing the rheological response of pressure-sensitive adhesives”, J. Non-Equilib. Thermodyn. 48, 91–105 (2023)

35. A. K. Ioannou, and P. S. Stephanou*, “Non-equilibrium thermodynamics modelling of the rheological response of cement pastes”, J. Rheol. 67, 849 (2023). [Selected as Featured article and highlighted in Scilight 2023, 221109 (2023)].

36. P. C. Konstantinou, and P. S. Stephanou*, “Predicting high-density polyethylene melt rheology using a multimode tube model derived using non-equilibrium thermodynamics”, Polymers, 15, 3322 (2023).

37. Μ. Giakoumi, P. S. Stephanou*, K. Kapnisis*, and A. Anayiotos, “On the Development of Physiologically Based Toxicokinetic Models (PBTK) for Cardiovascular Implants”, Regulatory Toxicology and Pharmacology, 144 105489 (2023).

bottom of page